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I. INTRODUCTION

Quantum impurity models play a prominent role in nano-
science as mathematical representations of quantum dots,
single-molecule devices, and adatoms on surfaces. In general
theoretical terms a quantum impurity model is a system with
a finite-dimensional Hilbert space �“dot”� coupled to one or
more infinite systems �“baths”� described by a Hilbert space
with a continuum of energy levels. The equilibrium proper-
ties of quantum impurity models are by now reasonably well
understood theoretically and indeed in most cases the prop-
erties of interest can be computed numerically to the neces-
sary accuracy.

By contrast, the nonequilibrium properties of quantum
impurity models are much less well understood. The subject
is of fundamental theoretical importance, as an instance of
the basic problem of the properties of nonequilibrium quan-
tum many-body systems. It is also of considerable experi-
mental interest in connection with the properties of quantum
dots where the Kondo effect plays an important role in trans-
port properties.1–5 Quantum impurity models are also closely
connected to the issue of transition rates and reaction dynam-
ics in chemistry.

Quantum impurity models may be driven out of equilib-
rium in several ways. If a system is coupled to more than one
reservoir, then a chemical potential or temperature difference
between reservoirs can generate a nonequilibrium steady
state in which current flows from one reservoir to another
across the dot. One may also consider a transient or steady-
state irradiation of the dot or the relaxation to steady state of
an atypical initial condition; in either case one may have
equilibrium or nonequilibrium reservoirs. While the basic
formalism for dealing with these problems was established
by Schwinger, Kadanoff, Baym, and Keldysh in the early
1960s,6,7 and a wide variety of perturbative approaches have
appeared �mainly tailored to specific physical applications�,
it is important to develop unbiased numerical methods which
allow the testing of theoretical conjectures and a comparison
of the properties of theoretical models to phenomena seen in
experiments.

Several numerical techniques have been applied to time-
dependent problems in interacting quantum dots. Numerical
renormalization-group methods8 have been shown to provide
impressively accurate treatments of relaxation dynamics in

dots with equilibrium baths, and extensions to nonequilib-
rium baths have recently been proposed.9 However, experi-
ence suggests that in equilibrium problems shows that these
approaches, although powerful, are limited in the range of
problems that can be treated and the range of energy scales
that can be accessed. Path integral sampling techniques in-
troduced in the quantum chemistry context10 have recently
been extended to the quantum dot problem.11 These tech-
niques require a finite “memory time,” and are therefore re-
stricted to nonzero temperature and voltage bias. The time-
dependent noncrossing approximation �NCA�12 gives access
to long times and spectral functions but is probably not reli-
able at strong interactions. The time-dependent density-
matrix renormalization group was also used to study the
transport properties of quantum dots coupled to one-
dimensional reservoirs.13,14

In this paper, we present an extension to the nonequilib-
rium case of quantum Monte Carlo �QMC� approaches based
on an unbiased sampling of diagrammatic expansions15–18

which, for equilibrium properties, have been shown to be
powerful enough to access extremely low temperatures and
flexible enough to treat a wide range of Hamiltonians. One of
the specific implementations we present is closely related to
recent work by Mühlbacher and Rabani,19 and Schiro and
Fabrizio20 for noninteracting dots with coupling to phonons.
An extension to interacting dots has been employed by
Schmidt et al. in Ref. 21. Here, we provide a systematic
analysis of the real-time diagrammatic approach, including a
discussion of the strengths and weaknesses of these methods,
and the regimes in which accurate results can be obtained.
We discuss the formalism and details of the measurement
formulas and implementations, and present results for ob-
servables including dot double occupancy and current
through the dot. The rest of this paper is organized as fol-
lows: in Sec. II we outline the formalism we used and
specify the model we treated, in Sec. III we present the
weak-coupling formalism, and in Sec. IV we present the
“strong coupling” or hybridization expansion method. Sec-
tion V presents results for the time-dependent dot occupation
and double occupancy, and Sec. VI discusses the current.
Section VII is a conclusion and outlook. An Appendix pre-
sents derivations of some needed formulas.
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II. FORMALISM AND MODEL

A. General considerations

A quantum impurity model is described by the Hamil-
tonian

HQI = Hdot + Hbath + Hmix. �1�

Here Hdot describes a system with a finite-dimensional Hil-
bert space, which we refer to as the “impurity” or dot, Hbath
describes one or more infinite reservoirs characterized by a
continuum of levels, and Hmix describes the coupling be-
tween the impurity and the reservoirs. We assume that at
time t=0 the state of the system is given by a density matrix
�0 which will be specified in detail later. The statement that
Hbath is an infinite reservoir implies that the distribution func-
tion describing the occupation of the energy levels of Hbath is
independent of the coupling to the dot.

The theoretical task is to evaluate the expectation value
�O�t�� of an operator O at time t, i.e., to compute

�O�t�� = Tr��0ei�0
t dt�HQI�t��Oe−i�0

t dt�HQI�t��� �2�

�the generalization to operators with multiple time depen-
dences is straightforward and will not be written explicitly�.
For a system in thermal equilibrium the issues in computing
�O� are well understood. In this paper we are concerned with
numerical approaches to describing the nonequilibrium situ-
ation. Nonequilibrium may enter through a time dependence
of parameters in HQI �“irradiation”�, through the correlators
of the operators in Hbath �“nonequilibrium reservoirs”�, or
through an initial density matrix �0 which is different from
the long-time limit. Our explicit considerations in this paper
pertain mainly to the “nonequilibrium reservoirs” and “non-
equilibrium �0” case but the methods we present generalize
straightforwardly to other situations.

One may6 view the expectation value in Eq. �2� as an
evolution on the Schwinger-Keldysh contour illustrated in
Fig. 1 from time t=0 �when the system is described by the
density matrix �0� to time t �at which the operator is mea-
sured�, and then back to time 0. Our general strategy for
evaluating Eq. �2� is to write HQI as a sum of two terms: one,
H0 for which the time evolution can be treated exactly and
another, HI, which is treated by a formal perturbative expan-
sion. The expansion in HI generates a series of diagrams
which are sampled stochastically, using an importance sam-
pling which accepts or rejects proposed diagrams on the ba-

sis of their contributions to �Õ� with, for example, Õ=1.
Two forms of expansion are considered: One is a “weak-
coupling” method, in which Hdot is partitioned into a qua-

dratic part Hdot
0 and an interacting part HU, the combination

Hdot
0 +Hmix+Hbath is diagonalized, �0 is taken to be the cor-

responding density matrix, and the expansion is constructed
in terms of HU. The other is a strong-coupling �more prop-
erly, “hybridization”� expansion in which Hdot and Hbath are
treated exactly, �0 is the density matrix corresponding to the
direct product of a lead density matrix and a density matrix
describing the dot decoupled from the leads, and Hmix is
treated as a perturbation. The hybridization expansion for
nonequilibrium problems was previously presented by Mühl-
bacher and Rabani19 in the context of noninteracting elec-
trons coupled to phonons, and has been applied to interacting
dots in Ref. 21. An essentially identical formalism has also
been discussed in Ref. 20.

Methods based on stochastically sampled diagrammatic
expansions have had considerable success in equilibrium
quantum impurity problems at temperature T�0.15–18 There,
the expansion can be formulated on the imaginary-time axis
0���1 /T �only one contour is needed� and the expansion
parameter is −HI���=e�H0�−HI�e−�H0. The fermionic sign
problem can be avoided �at least for sufficiently small dots�
and temperatures as low as 0.1% of the basic scales in the
problem can be reached without inordinate effort. Three re-
lated sources of difficulty arise in the nonequilibrium prob-
lem. First, the expansion must be done for real times so
convergence of the perturbation theory is oscillatory rather
than exponential: diagrams come with factors of i to powers
relating to the perturbation order. Second, two contours
rather than one are required, doubling the perturbation order
required to reach a given time. Third, in nonequilibrium situ-
ations the form of the density matrix is crucial to the quan-
tities �such as the current� which are to be computed; thus it
is essential that the computation proceeds long enough to
build up the correct entanglement between the impurity and
the bath. All of these factors limit the range over which ac-
curate results can be obtained but the crucial constraint is the
dynamical sign problem resulting from the oscillatory con-
vergence.

B. Model

The results in this paper are presented for the simplest
possible situation: a dot consisting of a single spin-
degenerate ��� level with a Hubbard interaction U, coupled
by hybridization V to two reservoirs �“leads”� labeled by �
=L ,R, with nonequilibrium entering via a possible difference
between reservoir chemical potentials. The extension to more
general situations is straightforward and involves no new
conceptual issues.

The Hamiltonian we consider is

Hbath = �
�=L,R

�
p,�

��p,�
� − 	��ap,�

�† ap,�
� , �3�

Hmix = �
�=L,R

�
p,�

�Vp
�ap,�

�† d� + H.c.� , �4�

Hdot
0 = ��d + U/2��

�

nd,�, �5�

5
t0

ρ0

t t

tt
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FIG. 1. �Color online� Example of a Monte Carlo configuration
corresponding to perturbation order n=5 and n+=3, n−=2.
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HU = U�nd,↑nd,↓ − �nd,↑ + nd,↓�/2� . �6�

It is also convenient to define

Hdot = Hdot
0 + HU. �7�

The initial density matrix is such that the correlators of lead
operators are �fT�x�= �ex/T+1�−1 is the Fermi distribution
function for temperature T�

�ap,�
�† ap�,��


 � = ��,
�p,p���,��fT�
��p,�

� − 	�� , �8�

and the statement that Hbath describes infinite reservoirs is the
statement that Eq. �8� holds at all times.

The model has three important energy scales: �d which
controls the steady-state dot occupancy, the interaction scale
U, and the level broadening,

���� = ��
p

	Vp
�	2�� − �p

�� , �9�

associated with lead �. The total level broadening is

� = �L + �R, �10�

and the dimensionless measure of interaction strength is
U /�. Very roughly, strong-coupling physics appears for U
��� while the opposite limit is described reasonably well
by perturbation theory in U �see Sec. V�.

III. WEAK-COUPLING ALGORITHM

A. Weak-coupling expansion and auxiliary field decomposition

In the weak-coupling expansion we treat H0
Hdot
0

+Hmix+Hbath exactly and HU as a perturbation. H0 is a non-
interacting problem for which the density matrix and all cor-
relators of the dot-lead system can be determined exactly. We
take the initial density matrix to be the steady-state density
matrix corresponding to H0 �here we assume the tempera-
tures of the two leads are identical; the generalization to
unequal temperatures is straightforward�

�0 =
e−
H0

Tr e−
H0
, �11�

and consider the interaction to be turned on at time t=0.
We formulate the perturbation theory in U as a real-time

incarnation of the recently developed continuous-time auxil-
iary field method of Ref. 18, which itself is an adaptation of
ideas in Ref. 22 to impurity models. The starting point for
the real-time auxiliary field method is the following expres-
sion for the identity:

1 = Tr �0eit�H0+HU−K/t�e−it�H0+HU−K/t�, �12�

with K as a constant which is in principle arbitrary and may
be chosen to optimize the simulation. Using an interaction
representation in which the time evolution of the operators is
given by O�s�=eisH0Oe−isH0, we can rewrite Eq. �12� as

1 = Tr �0�T̃ exp�i
0

t

ds�HU�s� − K/t���eitH0e−itH0

��T exp�− i
0

t

ds�HU�s� − K/t��� , �13�

with T denoting the time-ordering and T̃ denoting the anti
time-ordering operator, and expand the time-ordered expo-
nentials into a power series. This leads to the expression

1 = Tr �0�
m

�− iK/t�m
0

t

dt̃1¯
t̃m−1

t

dt̃meit̃1H0

��1 − tHU/K� ¯ ei�t̃m−t̃m−1�H0�1 − tHU/K�ei�t−t̃m�H0

� �
n

�iK/t�n
0

t

dt1¯
tn−1

t

dtne−i�t−tn�H0

��1 − tHU/K� ¯ e−i�t2−t1�H0�1 − tHU/K�e−it1H0. �14�

Using the explicit form for HU �Eq. �6�� and the auxiliary
field decomposition of Ref. 22, we can rewrite the interaction
term as

1 − �tU/K��nd,↑nd,↓ − �nd,↑ + nd,↓�/2� = 1/2 �
s=−1,1

e�s�nd,↑−nd,↓�,

�15�

cosh��� = 1 + �tU�/�2K� . �16�

Note that the constant K has been introduced to enable this
decomposition. The trace is now a product of exponentials of
one-body operators,

1 = �
m

�
n

�− i�min�K/2t�m+n �
s̃1,. . .,s̃n

�
s1,. . .,sm


0

t

dt̃1¯
t̃m−1

t

dt̃m

�
0

t

dt1¯
tn−1

t

dtn�
�

�1/Tr e−
H0,��

� Tr�e−
H0,�eit̃1H0,�e�s̃1�nd,� . . . ei�t̃m−t̃m−1�H0,�e�s̃m�nd,�

�e−i�t̃m−tn�H0,�e�sn�nd,� . . . e−i�t2−t1�H0,�e�s1�nd,�e−it1H0,�� ,

and can be expressed18 in terms of determinants of two �n
+m�� �n+m� matrices,

N�
−1 = eS� − iG0,��eS� − I� , �17�

as

1 = �
m

�
n

�− i�min�K/2t�m+n �
s̃1,. . .,s̃n

�
s1,. . .,sm


0

t

dt̃1¯
t̃m−1

t

dt̃m

�
0

t

dt1¯
tn−1

t

dtn�
�

det N�
−1, �18�

with eS� =diag�e�s̃1� , . . . ,e�s̃m� ,e�sn� , . . . ,e�s1��, and G0,�
given by
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G0,��tK� ,tK� � = �G0,�
� �t�,t�� , tK� � tK�

G0,�
� �t�,t�� , tK� � tK� .

� �19�

In the above expression, G0
��t , t��= i�d†�t��d�t��0, G0

��t , t��
=−i�d�t�d†�t���0, tK is the “Keldysh time” coordinate along
the unfolded Keldysh contour �Fig. 1�, and t is the time cor-
responding to tK. These Green’s functions may be computed
by standard methods.23 A general expression is presented in
the Appendix; for our actual computations we will use the
infinite-bandwidth limit in which the level broadening is in-
dependent of  so that

G0
�/��t�,t�� = � i �

�=L,R
�� d

2�
e−i�t�−t��

1 � tanh� − 	�

2T
�

� − �d − U/2�2 + �2

�20�

with the upper sign pertaining to G0
� and the lower sign to

G0
�.

B. Detailed balance and fast updates

The algorithm samples auxiliary Ising spin configurations
��tK,1 ,s1� , �tK,2 ,s2� , . . . , �tK,n ,sn�� time ordered along the
“Keldysh” contour 0→ t→0 �see Fig. 1� by random inser-
tions and removals of spins. The complex “weight” of a spin
configuration is given by

w���tK,1,s1�,�tK,2,s2�, . . . ,�tK,n,sn���

= �− in−��in+��Kdt/2t�n−+n+�
�

det N�
−1, �21�

where n+ denotes the number of spins on the forward contour
and n− denotes the number of spins on the backward contour
�n=n++n−�.

The detailed balance condition for insertion/removal of a
spin is similar to the imaginary-time formulation of Ref. 18.
Assuming that we pick a random time on the unfolded con-
tour of length 2t and a random direction for this new spin
�pprop�n−1→n�= �1 /2��dt / �2t���, and propose to remove this
spin with probability pprop�n→n−1�=1 /n, we get

p�n − 1 → n�
p�n → n − 1�

= � i
2K

n �
�

det�Nn
−1��

det�Nn−1
−1 ��

, �22�

with the factor +i corresponding to a spin which is inserted
on the forward contour and −i to a spin which is inserted on
the backward contour.

For the fast updates, let us consider the most complicated
case, which is the insertion of a spin. This update adds one
row and one column to the �n−1�� �n−1� matrix N, result-
ing in the n�n matrix N� �we assume here that this new
row/column is the last one, n, and drop the spin index�. The
determinant ratio is

r =
det�N�−1�
det�N−1�

= �eS − iG0�eS − I��n,n

− �
i=1

n−1

Ri�eS − iG0�eS − I��i,n, �23�

with Ri=� j=1
n−1�eS− iG0�eS− I��n,jNj,i. The calculation of this

quantity requires O�n2� operations. The new matrix elements
are given by

Ni,j� = Ni,j +
1

r
LiRj , �24�

Ni,n� = −
1

r
Li, �25�

Nn,j� = −
1

r
Rj , �26�

Nn,n� =
1

r
, �27�

with i=1, . . . ,n−1, and Li=� j=1
n−1Ni,j�eS− iG0�eS− I�� j,n.

From Eq. �27� it follows that computing the determinant
ratio for removing a spin is O�1�. The elements of the re-
duced matrix are obtained as

Ni,j = Ni,j� −
Ni,n� Nn,j�

Nn,n�
. �28�

C. Green’s function, dot population, and double
occupancy

To measure the Green’s function G��tK� , tK� �, we have to
insert an operator d� at time tK� and an operator d�

† at time tK� .
The weights of these configurations
w���tK,1 ,s1� , . . . , �tK,n ,sn�� ;d��tK� �d�

†�tK� �� are related to those
defined in Eq. �21� by

w���tK,1,s1�, . . . ,�tK,n,sn��;d�t��d†�t���
w���tK,1,s1�, . . . ,�tK,n,sn���

=
1

det N�
−1

�det� N�
−1�i, j� iG0,��tK,i,tK� �

− iG0,��tK� ,tK,j��e��sj − 1� iG0,��tK� ,tK� �
� .

�29�

Hence, the Green’s function can be obtained as the Monte
Carlo average of the quantity �see also Ref. 18�

G̃��tK� ,tK� � = G0,��tK� ,tK� � + i �
i,j=1

n

G0,��tK� ,tK,i�

���eS� − 1�N��i,jG0,��tK,j,tK� � , �30�

which yields the measurement formulas
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G��tK� ,tK� � = �G̃��tK� ,tK� �� , �31�

n��tK� = 1 − i�G̃��tK,tK�� , �32�

n↑n↓�tK� = ��1 − iG̃↑�tK,tK���1 − iG̃↓�tK,tK��� . �33�

D. Current measurement

The current from the dot to the left lead is

IL = �
�

IL� = − 2 Im�
�

�
p�L

Vp,�
L �ap,�

L† d�� . �34�

Thus, in terms of the composite lead operator ãL,�
†


�p�LVp,�
L ap,�

L† , we find

IL��t� = − 2 Im Tr �0�T̃ exp�i
0

t

ds�HI�s� − K/t���eitH0ãL,�
† d�e−itH0�T exp�− i

0

t

ds�HI�s� − K/t���
= − 2 Im �

m
�

n

�− i�min�K/2t�m+n �
s̃1,. . .,s̃n

�
s1,. . .,sm


0

t

dt̃1¯
t̃m−1

t

dt̃m
0

t

dt1¯
tn−1

t

dtn det N�̄
−1 1

Tr e−
H0,�

� Tr�e−
H0eit̃1H0,�e�s̃1�nd,� . . . e�s̃m�nd,�ei�t−t̃m�H0,�ãL,�
† d�e−i�t−tn�H0,�e��sn�nd,� . . . e�s1�nd,�e−it1H0,�� , �35�

with �̄ denoting the spin which is opposite to � �this spin
component has no operator ã and thus simply gives the usual
factor det N�̄

−1�. The measurement of the current is thus very
similar to the measurement of the Green’s functions but one
factor in the Wick decomposition is now

A�tK,tK� � = � A��t,t�� 
 �ã�
L†�t��d��t��0, tK � tK�

A��t,t�� 
 − �d��t�ã�
L†�t���0, tK � tK� .

�
�36�

A derivation and a general expression are given in the Ap-
pendix. In the infinite-bandwidth limit we have

�A��t,t��
A��t,t�� � = − 2i d

2�
e−i�t−t���L�R�f� − 	L� − f� − 	R��

� − �d − U/2�2 + �2

+ 2�L d

2�
e−i�t−t�� � − �d − U/2�

� − �d − U/2�2 + �2

� � f� − 	L�
�f� − 	L� − 1� � . �37�

The trace factor in Eq. �35� for an nth order diagram corre-
sponding to the n�n matrix N�

−1 is the determinant of the
�n+1�� �n+1� matrix

M�
−1 = � N�

−1�i, j� A�tK,i,t�
− iG0,��t,tK,j��e��sj − 1� A�t,t�

� . �38�

The current can thus be expressed as follows:

IL = − 2 Im�
�

�
c

wc
I�

= − 2 Im�
�
��c

	wc	�wc
I�/	wc	�

�c
	wc	�c

�
= − 2 Im�

�
�� wc

I�

	wc	
�

	wc	

1

��c�	wc	
� , �39�

with �c denoting the phase of the weight wc �Eq. �21�� and

wc
I�

wc
=

det N�̄
−1 det M�

−1

det N�̄
−1 det N�

−1

= A�t,t� + �
n,m

iG0,��t,tK,n���eS� − 1�N��n,mA�tK,m,t� .

�40�

Combining Eqs. �39� and �40�, the current measurement for-
mula becomes

I = IL = − 2 Im�
�
�A�t,t� + ��

n,m
iG0,��t,tK,n�

���eS� − 1�N��n,mA�tK,m,t��c�
	wc	

1

��c�	wc	
� . �41�

The first term in this expression is the steady-state current for
the noninteracting system

I0 = − 2 Im�2A�t,t�� = 8 d

2�

�L�R�f� − 	L� − f� − 	R��
� − �d − U/2�2 + �2 .

�42�
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E. Real-time Hirsch-Fye method

In order to assess the efficiency of the continuous-time
weak-coupling approach, we have also performed calcula-
tions using the real-time version of the Hirsch-Fye method.24

In this method, time is discretized along the Schwinger-
Keldysh contour and the identity is expressed as

1 = Tr �0eitHe−itH = Tr �0�
l=1

L/2

ei�t�H0+HU��
l=1

L/2

e−i�t�H0+HU�

�43�

�Tr �0�
l=1

L/2

ei�tH0ei�tHU�
l=1

L/2

e−i�tH0e−i�tHU, �44�

where we used the Trotter breakup and L denotes the �even�
number of time slices. In the real-time Hirsch-Fye method,
the interaction term for each time slice is decoupled using
the Hubbard-Stratonovich transformation,

e−i�tHU =
1

2 �
s=�1

e�s�n↑−n↓�, � = cosh−1�ei�tU/2� . �45�

After this decoupling, we obtain a product of exponentials of
one-body operators and the trace can thus be computed ana-
lytically. Besides the fact that � is a complex number and
that the noninteracting Green’s function is given by Eq. �19�,
the derivation of the algorithm and the sampling procedure
are identical to the original imaginary-time Hirsch-Fye
method. Two sources of error exist in this method. One is the
discretization error due to the Trotter breakup and the other
is the stochastic error which becomes severe at large L due to
the sign problem. Because of these limitations, the real-time
Hirsch-Fye method is restricted to short-time calculations,
and indeed the time limits appear to be more stringent than in
the continuous-time methods we introduced here �see, for
example, Fig. 8�.

IV. HYBRIDIZATION-EXPANSION ALGORITHM

A. Formalism

A complementary diagrammatic Monte Carlo algorithm
can be obtained by performing an expansion in powers of the

dot-lead hybridizations V. This simulation approach has been
introduced for equilibrium systems �imaginary-time formal-
ism� in Refs. 16, 17, and 25, and was recently discussed for
a nonequilibrium dot with phonons �but without electron-
electron interactions� in Refs. 19 and 20. It has been applied
to interacting dots in Ref. 21. We will present here the deri-
vation for the impurity model defined in Eqs. �3�–�6� but the
method can easily be extended to general classes of impurity
models by using the matrix formulation of Ref. 17.

In the hybridization expansion approach, one adopts an
interaction representation with respect to the dot-lead mixing
so the time evolution of the operators is given by the local
part of the Hamiltonian, Hloc=Hdot+Hbath, and the starting
point is the identity

1 = Tr �0�T̃ exp�i
0

t

dsHmix�s���eitHloce−itHloc

��T exp�− i
0

t

dsHmix�s��� . �46�

The initial state of the system is specified by the density
matrix �0=�dot � �bath, with �bath a function of inverse tem-
perature 
 and the chemical potentials 	L,R. In the calcula-
tions presented here, we assume that the dot is initially
empty, �imp= 	0��0	.

Expanding the time-ordered exponentials into a power se-
ries yields

1 = Tr �0�
m

im
0

t

dt̃1¯
t̃m−1

t

dt̃mHmix�t̃1� ¯ Hmix�t̃m�

� �
n

�− i�n
0

t

dt1¯
tn−1

t

dtnHmix�tn� ¯ Hmix�t1� .

�47�

Because Hmix=���Hmix
d� +Hmix

d�
†

� with Hmix
d� =��=L,R�p

�Vp
�ap,�

�† d�, Hmix
d�

†

= �Hmix
d� �†, and the time evolution conserves

the spin, we need for each � separately an equal number of
creation and annihilation operators on the Keldysh contour
0→ t→0:

1 = �
m�+n�=m��+n��

�
�

im�+m���− i�n�+n�� � 
0

t

dt̃1
�
¯

t̃m�−1
�

t

dt̃m�

� 
0

t

dt̃1�
�
¯

t̃
m��−1
��

t

dt̃m
��

��
0

t

dt1
�
¯

tn�−1
�

t

dtn�

� 
0

t

dt1�
�
¯

t
n��−1
��

t

dtn
��

��

� Tr��0T̃T�
�

Hmix
d� �t̃1

��Hmix
d�

†

�t̃1�
��Hmix

d� �t̃2
��Hmix

d�
†

�t̃2�
�� ¯ eiHlocte−iHloct

¯ Hmix
d� �t2

��Hmix
d�

†

�t2�
��Hmix

d� �t1
��Hmix

d�
†

�t1�
��� , �48�

where T̃ is the anti time-ordering operator for the t̃s and T is the time-ordering operator for the ts. At this stage we can separate
the bath operators ap,�

� from the dot operators d� and write
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1 = �
m�+n�=m��+n��

�
�

im�+m���− i�n�+n�� � 
0

t

dt̃1
�
¯

t̃m�−1
�

t

dt̃m�

� 
0

t

dt̃1�
�
¯

t̃
m��−1
��

t

dt̃m
��

��
0

t

dt1
�
¯

tn�−1
�

t

dtn�

� 
0

t

dt1�
�
¯

t
n��−1
��

t

dtn
��

��

� Trd��dotT̃T�
�

d��t̃1
��d�

†�t̃1�
��d��t̃2

��d�
†�t̃2�

�� ¯ eiHdotte−iHdott
¯ d��t2

��d�
†�t2�

��d��t1
��d�

†�t1�
���

� Trbath��bathT̃T�
�

�
p̃1�̃1;. . .;p̃m�

�̃m�

�
p̃1��̃1�;. . .;p̃

m��
� �̃

m��
�

�
p1�1;. . .;pn�

�n�

�
p1��1�;. . .;p

n��
� �

n��
�

Vp̃1

�̃1V
p̃1�
�̃1��

¯ Vp1

�1V
p1�
�1��

�a�
†�t̃1

��a��t̃1�
��a�

†�t̃2
��a��t̃2�

�� ¯ eiHbathte−iHbatht
¯ a�

†�t2
��a��t2�

��a�
†�t1

��a��t1�
��� , �49�

with �i� �L ,R�. Since the leads are noninteracting �see Eq.
�3��, we can evaluate the factor Trbath�¯� exactly. Due to
Wick’s theorem one obtains a product of two determinants
��det M�

−1, with the size of M�
−1 given by the number of

operators d� on the Keldysh contour �m�+n��. The matrix
elements are given by17,19

M�
−1�i, j� = i��tK,i

� ,tK,j�� � , �50�

where tK,i
� denotes the position of the ith annihilation opera-

tor and tK,j�� the position of the jth creation operator for spin �
on the unfolded Keldysh contour. The function � is dis-
cussed in the Appendix and is

��tK,tK� � = ����t� − t� 
 �L
��t� − t� + �R

��t� − t� , tK � tK�

���t� − t� 
 �L
��t� − t� + �R

��t� − t� , tK � tK� ,
�

�51�

with

��
��t� = − 2i

−�

� d

2�
e−it����f� − 	�� , �52�

��
��t� = 2i

−�

� d

2�
e−it�����1 − f� − 	��� . �53�

We give here simple expressions for two types of bands,
illustrated in Fig. 2, which are exact in the limit T→0 and a

good approximation for T�c. The first is a band with soft
cutoff, centered on the chemical potential,

�soft
� �� = ��e−	−	�	/c. �54�

For symmetric voltage bias �	L=−	R=V /2� and symmetric
couplings ��L=�R�, we obtain

�soft
�/��t� � �

cos�V

2
t�


 sinh��



�t � i/c�� . �55�

The second example is a flat band centered at zero with a
hard �Fermi-function-like� cutoff at = �c,

�hard
� �� =

��

�1 + e��−c���1 + e−��+c��
, �56�

which yields

�hard
�/��t� � �� cos�V

2
t�


 sinh��



t� −

e�ict

� sinh��

�
t�� . �57�

To evaluate the trace over the impurity states in Eq. �49�,
Trd�¯�, it is useful to employ the segment representation
introduced for impurity models with density-density interac-
tions in Ref. 16. The sequence of dot creation and annihila-
tion operators uniquely determines the occupation of the dot
at each time, and we can represent the time evolution using
collections of segments for spin-up and spin-down electrons
as shown in Fig. 3. Each segment depicts a time interval for
which an electron with corresponding spin resides on the dot.
The trace over the impurity states can then simply be ex-
pressed as

Trd�¯� = �imp�c�exp�− i�d�
�

�lforward
� − lbackward

� �

− iU�lforward
overlap − lbackward

overlap �� . �58�

Here, �imp�c� is the element of the impurity density matrix
which is compatible with the operator sequence c

εε µ
µL

R

∼2ωc

Lµ

−ωc

ωc

µR

FIG. 2. Illustration of the band cutoffs considered in the simu-
lations. The soft cutoff ��a� panel� is an exponentially decaying
��� which is centered at the chemical potential. The band with
hard cutoff ��b� panel� is symmetric around =0 and does not shift
with the chemical potential.
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= �tK,1
� , . . . , tK,m�+n�

� ; tK,1�� , . . . , tK,m
��+n

��
�� � �assumed here to be one

for configurations which start and end with an empty dot,
and zero otherwise�, l� is the length of the segments for spin
�, and loverlap is the length of the overlap between spin-up
and spin-down segments.

Hence, the Monte Carlo simulation samples collections c
of segments on the doubled “Keldysh contour” �one for each
spin� according to their weight

w�c� = �
�

im�+m���− i�n�+n��det M�
−1dtm�+m��+n�+n��

� �imp�c�exp�− i�d�
�

�lforward
� − lbackward

� �

− iU�lforward
overlap − lbackward

overlap �� . �59�

We implemented the following local updates of the segment
configurations: �i� insertion/removal of a segment, �ii�
insertion/removal of an antisegment �empty space between
segments�, and �iii� shifts of segment end points. In order to
use fast update formulas similar to those discussed in Sec.
III, we store and manipulate the matrices M�, that is, the
inverse of the matrices defined in Eq. �50�.

B. Measurement of the Green’s function, density,
and double occupancy

The Green’s functions can be obtained from the matrix M
in a procedure analogous to the one proposed for imaginary-
time simulations in Ref. 16. Particularly simple is the calcu-
lation of the density and double occupancy. From the seg-
ment representation it immediately follows that n��t� is the
probability to have a segment of spin � present at time t
while n↑n↓�t� is the probability to find overlapping segments
at time t �taking into account the signs of the Monte Carlo
configurations�:

n��t� =
��c��segment of type � at t��	wc	

��c�	wc	
, �60�

n↑n↓�t� =
��c��segments of type ↑ and ↓ at t��	wc	

��c�	wc	
.

�61�

C. Current measurement

The current IL�=−2 Im �p�LVp,�
L �ap,�

L† d��=−2 Im�ãL,�
† d�

can be measured as explained in Ref. 19. We expand the
quantity

IL��t� = − 2 Im Tr �0�T̃ exp�i
0

t

dsHmix�s���
�eitHlocãL,�

† d�e−itHloc�T exp�− i
0

t

dsHmix�s���
�62�

in powers of Hmix, which leads to the same collection of
diagrams as discussed above, except that there is now an
operator d� fixed at time t and that the hybridization func-
tions � connecting to this operator have only an L compo-
nent:

M�
−1�i, j� = i�L�tK,i

� ,tK,j�� � + i�R�tK,i
� ,tK,j�� ��1 − �t,tK,i

� � . �63�

Having identified the Monte Carlo configurations c �illus-
trated in Fig. 4� and their weights wc, we can implement a
random walk based on 	wc	 and measure the current as

IL� = �
c

wc = ��c�	wc	�
c

	wc	 . �64�

In contrast to the density measurement �which was based on
an expansion of the identity so that �c	wc	=1 / ��c�	wc	�, we
cannot directly measure the normalization factor �c	wc	. One
possibility to get rid of this unknown factor is to consider the
ratio I / I�1� between the current and the lowest-order contri-
bution I�1� which can be calculated analytically. Since

IL�
�1� = ��c��c first order��	wc	�

c

	wc	 , �65�

we can measure the current as

IL� = IL�
�1�

��c�	wc	

��c��c first order��	wc	
. �66�

V. RESULTS: PERTURBATION ORDER, DENSITY, AND
DOUBLE OCCUPANCY

A. Perturbation order and average sign

The average perturbation order increases linearly with the
time interval to be simulated and is not per se the important
limiting factor in the simulations. The main constraint is a

U0 ε ε 02ε+ε ε0

t0

ρ0

FIG. 3. �Color online� Segment representation of a Monte Carlo
configuration corresponding to perturbation order four for spin up
�upper contour� and two for spin down �lower contour�. Dot cre-
ation operators are shown as full circles and annihilation operators
as open circles. The segments represent the time intervals in which
an electron of the corresponding spin resides on the dot.

0

t0

ρ

FIG. 4. �Color online� Segment configurations obtained from the
expansion of the current �Eq. �62�� in powers of the dot-lead hy-
bridization. There is a fixed operator d� �red/gray open circle� at
time t and the hybridization functions connecting to this operator
have only a left �L� component.
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dynamical sign problem: the factors of ��i� associated with
each order of the expansion and the complex determinants
mean that the average sign of the diagrams contributing to
any quantity decays exponentially as the perturbation order
is increased. These phenomena are illustrated in Fig. 5 which
presents results obtained using the hybridization expansion
algorithm on a model of spinless fermions. The same behav-
ior is found in interacting models and in the weak-coupling
algorithm. The �a� panel shows the distribution of perturba-
tion orders for simulations over different time intervals. The
mean perturbation order can be estimated from the positions
of the maxima in these curves. The �b� panel shows the av-
erage sign, which is seen to decay exponentially with the
length of the time interval to be simulated. Note that both
diagrammatic algorithms can treat temperature T=0 without
particular difficulties.

Accurate measurements of physical quantities can be ob-
tained for �sign��0.001, and whether steady state can be
reached depends on the method, the parameters, and the ob-
servable. Nonzero temperature and voltage bias tend to re-
duce the sign problem but not enough to enable simulations
on significantly longer contours. The important effect of a

nonvanishing voltage bias is to accelerate the convergence to
steady state, at least in the weak-coupling approach. As can
be seen, e.g., from the �b� panel of Fig. 5, while the basic
scaling behavior is the same for all models and parameters,
prefactors can depend substantially on details. A careful ef-
fort to optimize parameters has not yet been undertaken but
seems likely to be worthwhile.

The �a� panel of Fig. 6 shows that, in the weak-coupling
approach, the average perturbation order �at fixed t� depends
on the interaction strength. As in the imaginary-time version
of this algorithm,18 the perturbation order grows roughly lin-
early with increasing U, making it difficult to study dots with
U /��3. Larger values of K also lead to a larger perturbation
order and hence to a more severe sign problem, as illustrated
in Fig. 7. The parameter K can also be chosen negative or
complex �we used K=−0.01 in all our weak-coupling simu-
lations�. In this case, � is complex and some of the phase
oscillations are shifted from the ��iK�n� to the determinant.
It is in principle possible to choose different constants K+
and K− on the forward and backward contours. If K+= iK
=−K− �with K positive�, then all the phase oscillations from
the ��iK��n� are eliminated. However, it turns out that K+
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FIG. 5. Distribution of perturbation orders and average sign obtained using the hybridization expansion algorithm for a noninteracting dot
with soft cutoff, T=0, V=0, �d /�=−0.5, and a single species of fermion. �a� The distribution of perturbation orders for different lengths of
the contour �t�=1.25,1.50, . . . ,3 from left to right� and cutoff c /�=40. The average perturbation order grows �t. �b� The average sign as
a function of time for indicated values of the cutoff.
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FIG. 6. Distribution of perturbation orders for different values of the interaction U, T=0, V=0, and �d+U /2=0. �a� The distribution of
perturbation orders for the weak-coupling algorithm �t�=1, infinite bandwidth�, where the average perturbation order grows �U. �b� The
distribution of perturbation orders for the hybridization expansion algorithm �t�=1.5, c /�=10�. Here there is almost no dependence on
interaction strength.
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=−K− leads to a perturbation order which is about the same
as for iK on both the forward and backward contours, which
in turn is somewhat worse than −K on both the forward and
backward contours so that there appears to be no particular
advantage in this choice of K.

The �b� panel of Fig. 6 shows that, in the hybridization
expansion algorithm, the average perturbation order is essen-
tially independent of interaction strength. This is in contrast
to the imaginary-time version of this algorithm,16 where the
perturbation order decreases with increasing interaction
strength. From Eq. �59� it follows that the interaction term
merely adds a phase to the Monte Carlo weight and therefore
does not affect 	w�c�	. While the algorithm can treat strong
interactions, it is limited to finite bandwidth since the aver-
age perturbation order diverges as the bandwidth goes to
infinity �this is the reason for the dependence on cutoff seen
in the �b� panel of Fig. 5�. However, we find that systems
with larger cutoff reach steady state more rapidly �as in Fig.
1 of Ref. 21�. We have not yet attempted to optimize the
cutoff to strike the best balance between perturbation order
and time needed to reach steady state. Such an optimization
would be worthwhile.

B. Density and double occupancy

The �a� panel of Fig. 8 shows as black symbols the evo-

lution of the double occupancy obtained using the weak-
coupling algorithm in equilibrium �V=0� and at zero tem-
perature for a system tuned to be at half filling. At time t
=0 the double occupancy takes the value of 0.25 appropriate
to the noninteracting half filled system. The effect of the
interactions is to reduce it. The �b� panel shows the dot oc-
cupancy per spin, computed for a level position correspond-
ing to a quarter-filled dot at U=0. Turning on the interaction
increases the dot occupancy; this is a precursor of the
Coulomb-blockade plateau.

One sees from the figure that for U /�=2 it is possible to
obtain a good estimate of the steady-state value, whereas for
U /�=4 the perturbation order grows too rapidly with t and
the sign problem becomes severe before the system ap-
proaches the steady state. Whether or not steady state can be
reached depends on the observable. The statistics for the den-
sity is significantly better than for the double occupancy so
density calculations can be carried to longer times.

We also show in Fig. 8 results obtained with the real-time
Hirsch-Fye method for t�=1 and different numbers of time
slices. As the number of time slices is increased, the system-
atic error due to the Trotter breakup decreases and the result
approaches the continuous-time curves �which are free of
systematic errors�. Comparison of the �a� and �b� panels
shows that the density is less sensitive to Trotter errors than
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FIG. 7. �a� Perturbation order distribution for t�=1, U /�=2, V /�=0, and several positive values of K. The average signs in these
simulations are 0.24 �K=0.1�, 0.04 �K=1�, and 0.0002 �K=10�. �b� Complex K of norm 0.01. The best choice appears to be the negative K.
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FIG. 8. �Color online� Weak-coupling results for the double occupancy and density computed at T=0 and V=0 with parameter
K=−0.01 and for infinite bandwidth. �a� The double occupancy for U /�=2,3 ,4 at half filling ��d+U /2=0�. �b� The density per spin for
�d+U /2=� with the other parameters as the same. The full dots show the results from the real-time Hirsch-Fye method for t�=1 and
indicated values of the number of time slices L.
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the double occupancy. Because the sign problem in the real-
time Hirsch-Fye method becomes severe for L�30, longer
times can only be reached at the expense of larger discreti-
zation errors. In our calculations we found that the weak-
coupling continuous-time algorithm allows to roughly
double the time interval which can be simulated, compared
to Hirsch-Fye.

Simulations at V=0 and T=0 suffer from the most severe
sign problem. At nonzero voltage bias, the system reaches
steady state more rapidly, as illustrated in the �a� panel of
Fig. 9. For U /�=2 and 3 we can therefore obtain an accurate
estimate of the steady-state double occupancy. The voltage
dependence of this quantity is plotted in the �b� panel of Fig.
9. As the voltage bias is increased, the steady-state double
occupancy drops, reaches a minimum, and then increases
with increasing V toward the noninteracting value of 0.25.
The initial drop in the double occupancy is the result of the
destruction of Fermi-liquid coherence with increasing volt-
age bias, similar to the destruction caused in equilibrium by
a nonzero temperature. At larger voltage bias a reversion
toward the noninteracting value of 0.25 is evident. This non-
monotonic behavior was also observed by the time-
dependent density-matrix renormalization-group method.14

Figure 10 shows results for double occupancy and dot

occupation obtained using the hybridization expansion algo-
rithm. Here, the initial state is an empty dot which is decou-
pled from the leads and at t=0 we turn on the hybridization.
The �a� panel shows the time evolution of the double occu-
pancy in a dot with �d+U /2=0, a hard cutoff c /�=10,

�=��=10, and the �b� panel shows the evolution of the
density per spin. Increasing the interaction accelerates the
approach to equilibrium and leads to a slight overshooting of
n�t�. The reduction in the double occupancy is roughly con-
sistent with the result from the weak-coupling simulation
�note that the bandwidths are different�.

VI. RESULTS: CURRENT

A. Qualitative picture: perturbative and mean-field results

To orient the discussion of our results for the current, we
present here a brief outline of the expected qualitative behav-
ior, along with perturbative and mean-field calculations. In
the noninteracting limit, the d density of states of the model
defined by Eq. �1� takes an approximately Lorentzian form
with a peak at the d-level energy �d and a width of order �.
As U is increased, the structure of the d density of states
changes: the peak broadens and at large enough U splits into
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FIG. 9. Voltage dependence of the double occupancy for an infinite flat band, T=0, and half filling ��d+U /2=0�. �a� The time evolution
of the double occupancy for U /�=2 and indicated values of V. At finite voltage bias, the system reaches steady state much more rapidly than
for V=0. �b� The steady-state value of the double occupancy as a function of voltage bias for U /�=2 and 3, T=0, and half filling.
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FIG. 10. Hybridization expansion results for the double occupancy and density. �a� The double occupancy for indicated values of U, band
cutoff c /�=10, 
�=��=10, V=0, and �d+U /2=0. �b� The density per spin for the same parameters. The initial state is an empty dot
decoupled from the leads and at t=0 the dot-lead hybridization is turned on.
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two. The density of states in the region between the two
peaks becomes small except that, in the V→0, T→0 limit, a
narrow peak �the Kondo resonance� appears at the Fermi
level so the Fermi-level density of states remains essentially
unrenormalized. At temperatures or voltage biases greater
than the Kondo scale �which becomes exponentially small at
strong couplings�, the Kondo peak is believed to be de-
stroyed, leaving only the small density-of-states �Coulomb-
blockade� behavior.

The current I is, up to various constants, given by the
integral over the voltage window −V /2���V /2 of the
product of �L�R /�2 and the density of states. In the nonin-
teracting case I starts out linearly with V and saturates for
V��. As U is increased the broadening of the peak means
that the V value needed to reach current saturation increases.
The Kondo physics implies that the T=0 linear-response cur-
rent is essentially independent of interactions but what hap-
pens at larger V in the strongly correlated regime is unclear.

Figure 11 shows the current computed from fourth-order
perturbation theory in U by Fujii and Ueda26 for the infinite-
bandwidth version of Eq. �1�. The initial linear rise and even-
tual saturation of the current are clearly visible, as is the
increase in the saturation voltage as U is increased. Also
visible in the calculation is the U independence of the linear-
response current and hints of the formation of the Coulomb-
blockade plateau at intermediate V and larger U. Of course,
the reliability of low-order perturbation theory at these inter-
action strengths may be questioned.

Figure 12 shows the results of computations performed
using mean-field theory27 as well as phenomenological gen-
eralizations. Details of the calculations are given in the Ap-
pendix but the essence is as follows. In mean-field theory of
the model studied here, at T=0 and in equilibrium, a transi-
tion occurs at Uc=�� between an unpolarized weak-
coupling state and a strong-coupling state characterized by a
frozen local moment, and a spectral function split into upper
and lower Hubbard bands. This is the mean-field representa-
tion of Coulomb blockade. The mean-field theory does not
capture the Kondo effect so for U�Uc the near Fermi-
surface density of states is simply suppressed. For U�Uc, as

the voltage is increased, the degree of spin polarization de-
creases and within mean-field theory we find a sharp phase
transition at which the properties revert to those of the un-
polarized state. The dashed-dotted curve in the inset of Fig.
12 shows that for the model studied the transition is first
order �jump in m� and for U=12� occurs at V�7�. Refer-
ence 27 presented analytical arguments that a polarized
phase would extend to infinite voltage, at least in a model
with an infinite bandwidth; this behavior is not found in our
numerical solution of the finite-bandwidth model. The main
panel of Fig. 12 shows the mean-field current computed in
various approximations. The dashed double-dotted trace
�black� shows the current at U=0 �the small differences from
the U=0 trace in Fig. 11 arise because in Fig. 12 a finite
bandwidth is used, whereas in Fig. 11 an infinite-bandwidth
limit is taken�. The dashed-dotted curve �red� shows the cur-
rent computed from mean-field theory. Comparison to the
noninteracting �dashed double-dotted� curve reveals the
Coulomb-blockade suppression of the current at small bias
and the reversion to the noninteracting result at higher bias.
Within mean-field theory the reversion occurs via a first-
order transition at a critical bias of the order of one half of
the Coulomb gap. Mean-field theory is of course not an en-
tirely accurate description. For example, as noted by the au-
thors of Ref. 27, the transition is an artifact of mean-field
theory. One would expect features of the Coulomb gap to
persist at high-voltage biases. To qualitatively assess the con-
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FIG. 11. �Color online� Current computed as a function of volt-
age bias in the infinite-bandwidth model using fourth-order pertur-
bation theory in the interaction U �from Ref. 26�.
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FIG. 12. �Color online� Main panel: dashed-dotted line �red�:
current computed in mean-field theory for U=12� as a function of
voltage bias V assuming negligible pseudothermal broadening. Dot-
ted line �red�: current computed in mean-field theory assuming a
pseudothermal broadening equal to 20% of the voltage bias. Solid
line �blue�: current computed using mean-field theory with gap
fixed at the V=0 value and negligible pseudothermal broadening;
dashed line �blue�: current computed using mean-field theory with
gap fixed at the V=0 value and pseudothermal broadening equal to
20% of the voltage bias. Dashed double-dotted line �black�: current
computed for the noninteracting model �negligible pseudothermal
broadening�. Inset: dot magnetization as a function of voltage bias
V /� computed in mean-field theory for negligible pseudothermal
broadening �dotted-dashed line, red on line� and moderate pseudot-
hermal broadening �dotted line, red�. All computations were per-
formed for a hard cutoff with c=10� and ��=10.
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sequences of this physics, we show as the solid line �blue�
the results of a computation in which the Coulomb gap
�splitting of the density of states into two peaks� is fixed at
its V=0 value. A broader range of current suppression and a
high saturation voltage are evident.

The mean-field theory is deficient in an additional way.
Mitra and Millis28 showed that mean-field theory misses the
fact that bias voltage functions as an effective temperature
�proportional to the bias voltage times a numerical factor
related to scattering phase shifts� which broadens all of the
properties. In order to asses the qualitative effect of this con-
sideration, we modeled the pseudothermal broadening effect
of a voltage bias by performing the calculations at a tempera-
ture chosen to be Teff=0.2V. The dotted lines in the inset and
main panel show that the pseudothermal broadening effect
converts the first-order transition into a second-order one.
More significantly, we see that including an effective tem-
perature tends to decrease the current at higher biases. The
numerical calculations discussed below will be seen to be
most consistent with the fixed gap pseudothermally broad-
ened mean-field calculations.

B. QMC results: Current

1. Weak coupling expansion

In the weak-coupling simulations, the current starts from
the steady-state value for the noninteracting dot,
−4 Im A�0,0�, decreases in magnitude after the interactions
are turned on, and eventually converges at sufficiently long
times at the value corresponding to the steady-state current
through the interacting dot. As shown in Fig. 13, useful es-
timates for this steady-state value can be obtained for inter-
action strengths U /��3. While the first term in Eq. �37� can
be computed directly for the wide band limit, the second
integral requires a frequency cutoff c. However, we found
that the current results are insensitive to this cutoff value, as
long as c�V. All our results were obtained for c /�=10.

Figure 13 presents the time dependence of the current
obtained from the weak-coupling algorithm for different val-
ues of the voltage bias at U=2� ��a� panel� and at different

interaction strengths for fixed bias V=4� ��b� panel�. We see
that the effect of the interaction is to reduce the magnitude of
the current. However, the corrections are relatively small at
the U and bias voltages studied: the noninteracting systems
already gives a good approximation to the current if the in-
teraction is not too strong.

Figure 14 plots the current as a function of voltage bias
for different values of U. As shown in the �b� panel, the
largest reduction in the current is observed for V /��2.5,
which is comparable to the interaction strengths U /�=2 and
3. As a consistency check, we show in the �b� panel as a
thick black curve the interaction correction for U /�=2 de-
duced from the fourth-order perturbation calculation of Ref.
26. The perfect agreement with the Monte Carlo data shows
that the perturbative calculation gives accurate results at this
small coupling strength.

2. Hybridization expansion

In the hybridization expansion method �as it has been
implemented here�, the initial state is an empty dot decou-
pled from the leads so that at t=0 there is no current. As time
evolves from t=0 the current must build up to its steady-state
value and the dot occupancy may change. During this tran-
sient period, which has been studied in detail in Ref. 21, the
current into the dot from the right lead �IR� need not equal
the current out of the dot into the left lead �IL�. Figure 15
shows hybridization expansion results for the relaxation dy-
namics in a dot with voltage bias V /�=0 and 5. As the
dot-lead hopping is turned on, electrons rush from the leads
to the initially empty dot, leading to a fast initial rise in the
current. For V=0 the current from the dot to the left lead �IL�
or the right lead �−IR� eventually vanishes. For V�0, we see
that current initially flows into the dot from both sides but as
time is increased IL and −IR converge to equal and opposite
nonvanishing steady-state values. The �b� panel shows the
difference between the left and right currents, which is equal
to the derivative of the dot occupation number: IL− IR
=dn /dt, with n=n↑+n↓. This quantity depends relatively
weakly on voltage and converges to zero as the steady state
is reached.
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FIG. 13. Weak-coupling expansion results for the current at temperature T=0. �a� The time evolution for U /�=2 and indicated values of
the voltage bias. The value at time t=0 corresponds to the noninteracting current I0=−4 Im A�0,0�. As the interaction is turned on, the
magnitude of the current decreases and eventually converges to the steady-state value for the interacting dot. �b� The time dependence of the
current for V /�=4, and U /�=2 and 3.
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The average current I= �IL+ IR� /2 grows with V, as illus-
trated in the �a� panel of Fig. 16. For the parameters in this
figure �U /�=8, �d+U /2=0, band cutoff c /�=10, and 
�
=��=10�, the small oscillations at intermediate times mean
that we cannot obtain an accurate estimate of the steady-state
current. In the �b� panel we therefore show the current mea-
sured at time t�=1 �solid lines� and 1.25 �dashed lines� as a
function of voltage. At large voltage, one observes a slow
increase in I�V� in the “Coulomb-blockade” regime �V�U�
followed by a more rapid increase in the current once the
voltage bias exceeds the splitting between the Hubbard
bands of approximately U. We do not find a rapid increase
�comparable to the U=0 curve� in the current near V=0,
presumably because the time scales reached in this simula-
tion are not long enough for a Kondo resonance to form or
because the latter is destroyed by even a small applied volt-
age. However, at voltages V /��2, where the Kondo reso-
nance is wiped out, we expect our hybridization expansion
results to be fairly accurate.

Figure 17 compares the hybridization expansion results to
the mean-field and perturbative calculations. The �b� panel
shows the comparison to perturbation theory described in
Ref. 26. We see that for U�6� the results agree quite well.

The deviation seen in the U=0 current is due to a difference
in bandwidths �c /�=10 in the Monte Carlo simulation, and
infinite bandwidth in the analytical calculation�. However, at
very small V the hybridization expansion results indicate a
lower current than the perturbation expansion of the self-
energy. We believe that this difference arises because the
hybridization expansion was not run for long enough times
�t�=1.25� to capture the formation of the Kondo �or Fermi
liquid� resonance. In the perturbative calculation the cross-
over from the low V unrenormalized behavior to the larger V
suppressed I�V� �visible as a flattening of the perturbative
I�V� curve at V�2� for U=6�� occurs via a voltage-induced
splitting of the Kondo resonance, which was also observed in
NCA calculations.29 However, in these calculations the
crossover occurs at a voltage far higher than the Kondo tem-
perature, suggesting that the splitting of the Kondo resonance
and the associated “hump” in I�V� might be an artifact, and
that further investigation of the crossover would be worth-
while.

The �a� panel of Fig. 17 compares the hybridization ex-
pansion and mean-field calculations. The data for U=0 show
that the current measured at t�=2 gives a good estimate of
the steady-state result, especially for larger voltage biases
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�note that the noninteracting model provides a nontrivial test
for the strong-coupling method�. The mean-field theory
clearly underestimates the low V current �and in this regime
the QMC data probably are themselves an underestimate�.
However, at larger V the qualitative behavior of the QMC
calculations can be more or less reproduced by “fixed gap”
calculations if the “effective temperature” �proportional to V�
is properly adjusted. Figure 17 also shows that the interact-
ing current approaches the noninteracting value as V be-
comes very large. The comparison provides evidence of the
correctness of the simulation results at large biases. It shows
in particular that we are able to access long enough times to
obtain reasonable estimates of the asymptotic behavior and
suggests that future studies of the pseudothermal broadening
effect may be possible. Further investigation of the extent to
which Coulomb-blockade-like features persist at high bias
and strong coupling would also be of interest.

VII. CONCLUSIONS

In this paper we have investigated an approach to non-
equilibrium problems based on a stochastic sampling of dia-

grams on the Keldysh contour. Both an expansion in interac-
tion strength and an expansion in the dot-lead hybridization
were considered. The average expansion order scales linearly
with the time interval to be studied. In both methods the key
difficulty is a dynamical sign problem arising from the com-
plex weights appearing because one expands e�itH. The av-
erage sign decays exponentially with perturbation order, and
when it becomes smaller than about 0.001, the measurement
becomes prohibitively difficult.

For weakly interacting dots, the weak-coupling method
can be carried to longer times than the hybridization expan-
sion. A further advantage of the weak-coupling method is
that it starts from an initial density matrix which already
contains the entanglement between the dot and the leads so
less time is needed to reach steady state. However, the
growth of the average perturbation order with interaction
strength was found to be such that only interactions in the
weak to intermediate coupling regime U��� can be stud-
ied.

The strong-coupling method exhibits somewhat worse
convergence properties. In interacting dots, only times of the
order of one to two inverse level widths could be reached. A
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difficulty is that, as the method has been formulated here, the
initial state is a decoupled dot-lead state, which means that
the simulation has to build up the necessary dot-lead en-
tanglement before steady state can be reached. On the other
hand, the method works equally well for all interaction
strengths and the times accessible appear to be long enough
that steady-state behavior can be reached, at least at large
biases where the Kondo effect is not relevant. A general ad-
vantage of the diagrammatic Monte Carlo technique com-
pared to other methods is that the results are �within the
given error bars� exact. There are no discretizations, trunca-
tions, or other approximations. Our results demonstrate that
the methods have potential for the simulation of more real-
istic situations, and may also be able to provide basic in-
sights into issues including the crossover from the Kondo
�unrenormalized differential conductance� to high bias re-
gime.

We have not attempted to optimize either of the methods.
Better choices of cutoff and of initial conditions are likely to
improve the performance of the algorithms. Better sampling
procedures, improved estimators, or blocking techniques
should help reduce the sign problem. Most promising in our
opinion are strategies to reduce the average perturbation or-
der, for example, through the explicit treatment of bath states
in the hybridization expansion approach. Starting the real-
time evolution from a thermalized state by sampling configu-
rations on an “L-shaped” contour with an additional branch
along the imaginary-time direction may lead to a more rapid
convergence into the nonequilibrium steady state. Efforts in
these directions are under way.
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APPENDIX: WEAK COUPLING FORMALISM

1. Calculation of d−d Green’s function

We rewrite here for convenience the Hamiltonian for a
level coupled to two leads, �=L ,R �absorbing the Hartree
shift Un /2 into the definition of the level energy �d�

H0 = �
�

�dd�
†d� + �

k,�,�=L,R
�Vk

�ck,�
† d� + H.c.�

+ �
k,�,�=L,R

��k − 	��ck,�,�
† ck,�,�. �A1�

The physics associated with the coupling to the leads can be
reconstructed from

���� = ��
k

	Vk
�	2�� − �k� , �A2�

and

S��� = dx

�
P���x�

 − x
, �A3�

with P denoting the principal-value symbol. In the infinite
bandwidth, constant density-of-states limit �� is constant and
S���=0.

The coupling to the leads provides a self-energy � to the
dot Green’s function. Because the leads are infinite the self-
energy may be computed in terms of the correlators Gcond of
the c electrons with hybridization V=0.31 In the Larkin basis
the calculation follows the same lines as the equilibrium31

one with

��
R,A,K = �

k

	Vk
�	2Gcond,�

R,A,K �k,� , �A4�

where �� is the usual positive infinitesimal and the upper
�lower� sign pertains to GR �GA��

Gcond,�
R/A �k,� =

1

 − �k � i�
, �A5�

Gcond,�
K �k,� = − 2�i�� − �k�tanh� − 	�

2T�
� . �A6�

Inserting Eqs. �A5� and �A6� into Eq. �A4� gives

��
R�� = S��� − i���� , �A7�

��
A�� = S��� + i���� , �A8�

��
K�� = − 2i����tanh� − 	�

2T�
� . �A9�

Then using the symbol without the � subscript to denote the
sum of left and right channel contributions �so, e.g., �R,A,K

=�L
R,A,K+�R

R,A,K, etc.�, we find that the full d Green’s function
Gdd is given by

�Gdd
R Gdd

K

0 Gdd
A � = �� − �d 0

0  − �d
� − ��R�� �K��

0 �A�� ��−1

.

�A10�

Use of the standard relations23 gives

Gdd
� =

1

2
�Gdd

K + Gdd
R − Gdd

A �

= �
�

− i���1 + tanh�� − 	��/�2T����
� − �d − S�2 + �2 , �A11�

Gdd
� =

1

2
�Gdd

K − Gdd
R + Gdd

A �

= �
�

i���1 − tanh�� − 	��/�2T����
� − �d − S�2 + �2 . �A12�
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2. Calculation of A(t , t�)

We express the quantity A�t , t��= �ãL
†�t��d�t��0 �with

retarded/advanced/Keldysh nature here left unspecified� as

A = − i�
k

Vk
LGk

cd. �A13�

Use of the equation of motion that led to Eq. �11� of Ref. 32
gives �denoting convolution by products�

�AR AK

0 AA � = − i�Gdd
R Gdd

K

0 Gdd
A ���L

R �L
K

0 �L
A �

= − i�Gdd
R �L

R Gdd
R �L

K + Gdd
K �L

A

0 Gdd
A �L

A � . �A14�

From Eqs. �A10� and �A14� we find

AR = − i
� − �d − S − i���SL − i�L�

� − �d − S�2 + �2 , �A15�

AA = − i
� − �d − S + i���SL + i�L�

� − �d − S�2 + �2 , �A16�

AK = − i
� − �d − S − i���− 2i�LhL� − 2i��LhL + �RhR��SL + i�L�

� − �d − S�2 + �2 =
�− 2�LhL�� − �d� + 2�LhL�SR + i�R� − 2�RhR�SL + i�L�

� − �d − S�2 + �2 ,

�A17�

with h�=tanh��−	�� / �2T��� and �=�L+�R. Therefore,
with f�
 f�−	�� denoting the Fermi function for lead �
and use of the relation A�= 1

2 �AK−AR+AA�, we find

A� = − 2
i�L�R�fL − fR� − �LfL� − �d� + SR�LfL − SL�RfR

� − �d − S�2 + �2 .

�A18�

Setting S=0 gives

A� = − 2
i�L�R�fL − fR� − �LfL� − �d�

� − �d�2 + �2 . �A19�

3. Mean-field theory

In the mean-field theory27 of the nonequilibrium Anderson
model, one replaces the Hamiltonian by

HMF = �
�

��d�
†d� + �

�,p,�
�V�,pd�

†c�,p,� + V�,p
� c�,p,�

† d��

+ �
�,p,�

�pc�,p,�
† c�,p,�, �A20�

with

�� = �0 + Un−�. �A21�

The occupancy of the d orbital of spin � is then

nd� = d

�

�L��f� − 	L� + �Rf� − 	R�
� − �� − S���2 + ���2 , �A22�

and one requires self-consistency between Eqs. �A21� and
�A22�. In practice self-consistency is achieved by starting
from an initial guess and iterating until the equations cease to
change.

In our explicit calculations we took a flat band with a hard
cutoff defined by

�L,R�� = 0.5��tan−1�c + 

�
� + tan−1�c − 

�
�� ,

�A23�

SL,R =
0.5�

2�
ln� �c − �2 + �2

�c + �2 + �2� , �A24�

with c=10� and �=0.1�.
We choose conventions such that 	L+	R=0 and 	L−	R

=V. Then the current is given by

I = �
�
 d

2�

2�L���R���f� − 	L� − f� − 	R��
� − �� − S���2 + ���2 .

�A25�

To represent the broadening effect of a voltage bias, in some
calculations we include in the Fermi functions an effective
temperature equal to a constant times the voltage bias.
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